NCERT Class 8th Maths Solutions Factorisation | NCERT Solutions for Class 8 Maths Chapter 12 – Factorisation

Chapter 12 Factorisation

Exercise – 12.2

  1. Factorise the following expressions.

(i) a2+8a+16

Solution –

a2+8a+16

Using the identity      (a + b)2 = a2 + 2ab + b2

= a2+2×4×a+42

= (a+4)2

 

(ii) p2–10p+25

p2–10p+25

Using the identity      (a + b)2 = a2 + 2ab + b2

= p2– 2×5×p+52

= (p -5)2

 

(iii) 25m2+30m+9

25m2+30m+9

Using the identity      (a + b)2 = a2 + 2ab + b2

= (5m)2+2×5m×3+32

= (5m+3)2

 

(iv) 49y2+84yz+36z2

49y2+84yz+36z2

Using the identity      (a + b)2 = a2 + 2ab + b2

=(7y)2+2×7y×6z+(6z)2

= (7y+6z)2

 

(v) 4x2–8x+4

4x2–8x+4

Using the identity      (a + b)2 = a2 + 2ab + b2

= (2x)2-2×4x+22

= (2x-2)2

 

(vi) 121b2-88bc+16c2

121b2-88bc+16c2

Using the identity      (a + b)2 = a2 + 2ab + b2

= (11b)2-2×11b×4c+(4c)2

= (11b-4c)2

(vii) (l+m)2-4lm (Hint: Expand (l+m)2 first)

Expand (l+m)using the identity-   (a + b)2 = a2 + 2ab + b2

(l+m)2-4lm = l2+m2+2lm-4lm

= l2+m2-2lm

= (l-m)2

 

(viii) a4+2a2b2+b4

a4+2a2b2+b4

Using the identity    (a + b)2 = a2 + 2ab + b2

= (a2)2+2×ab2+(b2)2

= (a2+b2)2

 

2. Factorise.

(i) 4p2–9q2

 4p2–9q2

a2 – b2 = (a – b) (a + b)

Using the identity   a2 – b2 = (a – b) (a + b)

= (2p – 3q)( 2p + 3q)

 

(ii) 63a2–112b2

63a2–112b2

= 7(9a2 –16b2)

Using the identity   a2 – b2 = (a – b) (a + b)

= 7((3a)2–(4b)2)

= 7 (3a + 4b) (3a – 4b)

 

(iii) 49x2–36

49x2–36

Using the identity   a2 – b2 = (a – b) (a + b)

= (7x)2 – 62

= (7x + 6)(7x – 6)

 

(iv) 16x5–144x3

16x5–144x3

= 16x3(x2– 9)

= 16x3(x2– 9)

Using the identity   a2 – b2 = (a – b) (a + b)

=  16x3(x2– 32 )

= 16x3(x – 3)(x + 3)

 

(v) (l+m) 2– (l – m) 2

(l+m) 2– (l – m) 2

Using the identity   a2 – b2 = (a – b) (a + b)

= {(l+m) – (l–m)} {(l +m) + (l–m)}

= (l+m–l+m)(l+m+l–m)

= (2m)(2l)

= 4 ml

 

(vi) 9x2y2–16

9x2y2–16

Using the identity   a2 – b2 = (a – b) (a + b)

= (3xy)2– 42

= (3xy – 4) (3xy + 4)

 

(vii) ( x2–2xy+y2 ) – z2

( x2–2xy+y2 ) – z2

Using the identity      (a – b)2 = a2 – 2ab + b2

= (x–y)2–z2

= (x–y)2–z2

Using the identity   a2 – b2 = (a – b) (a + b)

= {(x–y) –z}{(x–y) + z}

= (x–y–z) (x–y+z)

 

(viii) 25a2–4b2+28bc–49c2

= 25a2– (4b2– 28bc + 49c2 )

= (5a)2– {(2b)2– 2(2b)(7c) + (7c)2}            Using the identity      (a – b)2 = a2 – 2ab + b2

= (5a)2– (2b – 7c)2

Using the identity   a2 – b2 = (a – b) (a + b)

= (5a+2b-7c)(5a-2b+7c)

 

 

3. Factorise the expressions.

(i) ax2+bx

ax2+bx

= x(ax+b)

(ii) 7p2+21q2

7p2+21q2

= 7(p2+3q2)

(iii) 2x3+2xy2+2xz2

2x3+2xy2+2xz2

= 2x(x2+y2+z2)

 

(iv) am2+bm2+bn2+an2

am2+bm2+bn2+an

= m2(a+b)+n2(a+b)

= (a+b)(m2+n2)

 

(v) (lm+l)+m+1

(lm+l)+m+1

= lm+m+l+1

= m(l+1)+(l+1)

= (m+1)(l+1)

 

(vi)  y(y+z)+9(y+z)

y(y+z) + 9(y+z)

= (y+z)(y+9)

 

(vii) 5y2–20y–8z+2yz

5y2–20y–8z+2yz

= 5y(y–4)+2z(y–4)

= (y – 4)(5y + 2z)

 

(viii) 10ab+4a+5b+2

10ab+4a+5b+2

10ab + 5b + 4a+2

= 5b(2a+1)+2(2a+1)

= (2a+1)(5b+2)

 

(ix)6xy–4y+6–9x

6xy–4y+6–9x

= 6xy–9x–4y+6

= 3x(2y–3)–2(2y–3)

= (2y–3)(3x–2)

 

4.Factorise.

(i) a4–b4

a4–b4

= (a2)2 – (b2)2                          Using the identity   a2 – b2 = (a – b) (a + b)

= (a2– b2) (a2+ b2)                Using the identity   a2 – b2 = (a – b) (a + b)

= (a – b)(a + b)(a2+b2)

 

(ii) p4–81

p4–81

= (p2)2– (9)2                                Using the identity   a2 – b2 = (a – b) (a + b)

= (p2– 9)(p2+ 9)

= (p2– 32)(p2+ 9)                                        Using the identity   a2 – b2 = (a – b) (a + b)

=(p-3)(p+3)(p2+9)

 

(iii) x4– (y+z) 4

x4– (y+z) 4

= (x2)2 – [ (y+z)2 ]2                                      Using the identity   a2 – b2 = (a – b) (a + b)

= {x2– (y+z)2}{ x2+(y+z)2}

= {(x – (y+z) (x+(y+z)}{x2+(y+z)2}

= (x–y–z)(x+y+z) {x2+(y+z)2}

 

(iv) x4–(x–z) 4

x4–(x–z) 4                                          Using the identity   a2 – b2 = (a – b) (a + b)

= (x2)2-{(x-z)2}2

= {x2-(x-z)2}{x2+(x-z)2}

= { x-(x-z)}{x+(x-z)} {x2+(x-z)2}

= z (2x-z)( x2+x2-2xz+z2)

= z (2x-z)( 2x2-2xz+z2)

 

 

(v) a4–2a2b2+b4 

a4–2a2b2+b4                                      Using the identity   a2 – b2 = (a – b) (a + b)

= (a2)2-2a2b2+(b2)2

= (a2-b2)2

= ((a–b)(a+b))2

= (a – b)2 (a + b)2

 

 

 

5. Factorise the following expressions.

NOTE –  इस प्रकार के सवालों में अंतिम पद की गुना प्रथम पद  में मौजूद संख्या से करेंगे ।  अब जो भी परिणाम आएगा उसको गुना के रूप में इस प्रकार लिखेंगे , जिससे योग मध्यम पद की संख्या के बराबर आए।

(i) p2+6p+8

p2+6p+8

Note –  यहाँ पर 8 की गुना 1 से करेंगे।  8 x 1

फिर 8 को गुना के रूप में इस प्रकार लिखेंगे जिससे कि उन संख्याओं का योग 6 आये

8 = 4 x 2

4 + 2 = 6

Note:    Here we will multiply 8 by 1.
8 x 1

Then 8 will be written in the form of multiplication in such a way that the sum of those numbers becomes 6.

8 = 4 x 2

4 + 2 = 6

p2+6p+8 can be written as ( इसको ऐसे लिख सकते है ) p2+2p+4p+8

Taking Common terms, we get ( समान पद को कॉमन ले लेंगे )

p2+2p+4p+8

= p(p+2)+4(p+2)

Again, p+2 is common in both the terms.  ( यहाँ भी p+2 समान पद को कॉमन ले लेंगे। )

= (p+2)(p+4)

(p+2)(p+4)

 

(ii) q2–10q+21

(ii) q2–10q+21

We observed that 21 = -7×-3 and -7+(-3) = -10

q2–10q+21 = q2–3q-7q+21

= q(q–3)–7(q–3)

= (q–7)(q–3)

 

(iii) p2+6p–16

p2+6p–16

We observed that -16 = – 2 × 8 and 8+(- 2) = 6

p2+6p–16

= p2–2p+8p–16

= p(p–2)+8(p–2)

= (p+8)(p–2)

= (p+8)(p–2)

 

 

NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles

FACEBOOK